تاریخچه

نظریه جنبشی توسط رابرت بویل (Rabert Boyle) (1627 – 1691) ، دانیل برنولی (1700 – 1782) ، جیمز ژول (1818 – 1889) ، کرونیگ (1822 – 1874) ، رودولف کلاوسیوس (1822 – 1888) و کلرک ماکسول ( 1831 – 1879 ) و عده‌ای دیگر تکوین یافته است. در اینجا نظریه جنبشی را فقط در مورد گازها بکار می‌بریم، زیرا برهم کنش‌های بین اتمها ، در گازها به مراتب متغیرترند تا در مایعات. و این امر مشکلات ریاضی را خیلی آسانتر می‌کند.

در سطح دیگر می‌توان قوانین مکانیک را بطور آماری و با استفاده از روشهایی که صوری‌تر و انتزاعی‌تر از روشهای نظریه جنبشی هستند بکار برد. این رهیافت که توسط جی ویلارد گیبس (J.willard Gibbs) و لودویگ بولتز مانیقوانین ترمودینامیک



(Ludwig Boltz manni) (1844 – 1906) و دیگران تکامل یافته است، مکانیک آماری نامیده می‌شود، که نظریه جنبشی را به عنوان یکی از شاخه‌های فرعی در بر می‌گیرد. با استفاده از این روشها می‌توان را به دست آورد. بدین ترتیب معلوم می‌شود که ترمودینامیک شاخه‌ای از علم مکانیک است.
img/daneshnameh_up/b/bb/Brownian.gif

محاسبه فشار بر پایه نظریه جنبشی

فشار یک گاز ایده‌آل را با استفاده از نظریه جنبشی محاسبه می‌کنند. برای ساده کردن مطلب ، گازی را در یک ظرف مکعب شکل با دیواره‌های کاملا کشسان در نظر می‌گیریم. فرض می‌کنیم طول هر ضلع مکعب L باشد. سطحهای عمود بر محور X را که مساحت هر کدام e2 است. A1 و A2 می‌نامیم. مولکولی را در نظر می‌گیریم که دارای سرعت V باشد. سرعت V را می‌توان در راستای یالهای مولفه‌های Vx و Vy و Vz تجزیه کرد.

اگر این ذره با A1 برخورد کند در بازگشت مولفه X سرعت آن معکوس می شود. این برخورد اثری رو ی مولفه Vy و یا Vy ندارد در نتیجه متغیر اندازه حرکت عبارت خواهد بود :


m Vx - m Vx) = 2 m Vx -) = اندازه حرکت اولیه – اندازه حرکت نهایی

که بر A1 عمود است. بنابراین اندازه حرکتی e به A1 داده می‌شود برابر با m Vx2 خواهد بود زیرا اندازه حرکت کل پایسته است.

زمان لازم برای طی کردن مکعب برابر خواهد بود با Vx/L. در A2 دوباره مولفه y سرعت معکوس می‌شود و ذره به طرف A1 باز می‌گردد. با این فرض که در این میان برخوردی صورت نمی‌گیرد مدت رفت و برگشت برابر با 2 e Vx1 عبارت است:


mVx2/e = Vx/2e . 2 mVx ، برای به دست آوردن نیروی کل وارد بر سطح A1 ، یعنی آهنگ انتقال اندازه حرکتی از طرف تمام مولکولهای گاز به A1 داده می‌شود.


خواهد بود. به طوری که آهنگ انتقال اندازه حرکت از ذره به A
(P = M/e(Vx12 + Vx22 + Vx32



P = 1/2eV2




img/daneshnameh_up/a/a3/damping.gif

تعبیر دما از دیدگاه نظریه جنبشی

با توجه به فرمول RT 2/3 = 1/2 MV2 یعنی انرژی کل انتقال هر مول از مولکولهای یک گاز ایده‌آل ، با دما متناسب است. می‌توان گفت که این نتیجه با توجه به معادله بالا برای جور در آمدن نظریه جنبشی با معادله حالت یک گاز ایده‌آل لازم است. و یا اینکه می‌توان معادله بالا را به عنوان تعریفی از دما بر پایه نظریه جنبشی یا بر مبنای میکروسکوبیک در نظر گرفت. هر دو مورد بینشی از مفهوم دمای گاز به ما می‌دهد. دمای یک گاز مربوط است به انرژی جنبشی انتقال کل نسبت به مرکز جرم گاز اندازه گیری می‌شود. انرژی جنبشی مربوط به حرکت مرکز جرم گاز ربطی به دمای گاز ندارد.

حرکت کاتوره‌ای را به عنوان بخشی از تعریف آماری یک گاز ایده‌آل در نظر گرفت. V2 را بر این اساس می‌توان محاسبه کرد. در یک توزیع کاتوره‌ای سرعتهای مولکولی ، مرکز جرم در حال سکون خواهد بود. بنابراین ما باید چارچوب مرجعی را بکار ببریم که در آن مرکز جرم گاز در حال سکون باشد. در چارچوبهای دیگر ، سرعت هر یک از مولکولها به اندازه U (سرعت مرکز جرم در آن چارچوب) از سرعت آنها در چارچوب مرکز جرم بیشتر است. در اینصورت حرکتها دیگر کتره‌ای نخواهد بود و برای V2 مقادیر متفاوتی بدست می‌آید. پس دمای گاز داخل یک ظرف در یک قطار متحرک افزایش می‌یابد. می‌دانیم که M V2 1/2 میانگین انرژی جنبشی انتقالی هر مولکول است. این کمیت در یک دمای معین که در این مورد صفر درجه سلسیوس است، برای همه گازها مقدار تقریبا یکسانی دارد. پس نتیجه می‌گیریم که در دمای T ، نسبت جذر میانگین مربعی سرعتهای مولکولهای دو گاز مختلف مساوی است با ریشه دمای عکس نسبت به مربعهای آنها.


T = 2/3k m1 V12/2= 2/3k m2 V22/2


نوشته شده در تاریخ پنجشنبه 8 بهمن 1388    | توسط: روژان حمیدی نژاد    |    | نظرات()